
The Hadoop 
Distributed File 

System
Ruoxi Zhang



Introduction - The Apache Hadoop

• Open source project
• Characteristic

• Distribute data and computation across 
clusters

• Execute application jobs in parallel
• Major contributors

• Yahoo!, Microsoft, Facebook, Cloudera
• Hadoop-related projects at Apache

• MapReduce, HBase, Pig, Hive, ZooKeeper, 
Chukwa, Avro, and etc.

https://hadoop.apache.org/
https://hbase.apache.org/
https://pig.apache.org/
https://hive.apache.org/
https://zookeeper.apache.org/
http://chukwa.apache.org/
https://avro.apache.org/



The 
Hadoop 

Distributed 
File System 

(HDFS)

§ Distributed file system
§ MapReduce framework
§ High I/O bandwidth for large datasets
§ Data durability – replication
§ Fault-tolerant



Architecture

§ Cluster
§ DataNodes – application data

§ block & replica – file segments
§ block’s metadata – checksums & 

generation stamp
§ NameNode – namespace tree & 

mapping of blocks to DataNodes
§ inodes – representation of files & 

directories; record attributes
§ image (in RAM) – file system’s 

metadata
§ checkpoint (on disk) – a 

persistent record of the image
§ journal (on disk) – modification 

log of the image



Architecture

§ Cluster
§ CheckpointNode – create a 

checkpoint
§ Downloads the current 

checkpoint & journal files from 
the active NameNode

§ BackupNode – create a checkpoint
§ Maintain the latest namespace 

state in its own storage



§ Cluster
§ Applications – users

§ Perform HDFS operations
§ read, write and delete files
§ create and delete directories

§ Use HDFS provided API
§ Reveal block locations
§ User defined replication 

factor
§ HDFS Client – interface

§ A black box to users

Architecture



§ System Startup/Restart 
§ DataNodes à NameNode

§ handshake – verify namespace ID 
& software version

§ register – verify storage ID
§ block report – send block 

information periodically/on-
demand 

§ heartbeat – periodically (shorter 
interval) ping

§ NameNode à DateNodes
§ heartbeat reply – instructions

§ layout version – data representation 
formats 

§ Read the checkpoint & apply journals

Startup



Block 
Placement

§ Nodes are spread across multiple racks
§ Nodes of a rack share a switch
§ Switches are connected to core switch(es)

§ Bandwidth within a rack > bandwidth 
across racks

§ NameNode assigns and resolves rack 
locations of DataNodes



Replicate for 
Durability

§ replication factor – 3 or user-defined
§ The NameNode allocates new blocks and 

replicates them based on a block/replica 
placement policy.
§ At most 1 replica of a block at a node.
§ At most 2 replicas of a block in a rack.

§ Factors: write/read cost, reliability, 
availability, and aggregation bandwidth



Replication
Management

§ Over-replicated Block – the 
NameNode removes replicas based on 
available storage and rack location

§ Under-replicated Block – a
dedicated thread replicates blocks from 
a priority queue

§ Balancer [admin] – balances disk 
storage usage of DataNodes

§ Decommissioning [admin] – safely 
removes a DataNode

§ Block Scanner [DataNode] – scans 
replicas and verifies checksums to 
detect corruptions



Interactions

§ Single writer & multiple readers – lease
§ Write – push data to the DataNodes pipeline 

§ hflush – ensure content visibility before 
file closed

§ TCP based protocols
§ Client-side buffer 
§ Three stages: setup, transfer, and 

close
§ Window size and acknowledgment



§ System Corruption
§ Reasons: software upgrades, software 

bugs, or human mistakes
§ Solution: roll back the entire HDFS 

cluster to the snapshot state
§ Snapshot [exactly one] – NameNode

§ Save the current namespace and 
storage state

§ Local Snapshot – DataNodes
§ Save a copy of the storage 

directory and hard links to blocks
§ Fault-tolerant – Rack or Core Switch

§ Replication & deliberately restart
§ Data Corruption – the client verifies 

checksums of blocks when read

Fault-tolerance



§ Yahoo!’s large HDFS cluster [1]
§ ~3500 nodes
§ 9.8 PB storage
§ 60 million files 
§ 63 million blocks 
§ The probability of losing a block < 0.005 per year
§ Linear total bandwidth

Implementation



§ Testing the I/O operations 
§ DFSIO Benchmark – average throughput

§ the same application, job, and data
§ Metric Collection System – average throughput

§ Many application, multiple jobs, and different data
§ Gray Sort Competition – the best throughput
§ NNThroughput Benchmark – NameNode throughput

§ Many clients, the same job, on a single NameNode

Implementation



§ Separated permissions for files and directories
§ Identity 

§ Weak – query the local OS for user identity
§ Strong – endpoint authentication to verify user 

identity and system identity
§ Application level fairness 
§ Control the size of the namespace

§ quota for directories’ space allocation
§ HAR to achieve a large number of small files under 

a common directory

Other Implementation Details



§ Automated failover solution – Zookeeper
§ Scalability of the NameNode – archive tool, partially 

stored namespaces in RAM, distributed NameNodes
§ Larger clusters and cooperation between clusters

Future Work



HDFS 
as A

Hadoop
Project

§ Big data storage
§ Parallel processing
§ High-throughput access 
§ Multiple copies of data 
§ Restart and backup



Reference

§ K. Shvachko, H. Kuang, S. Radia, R. Chansler, 
The Hadoop Distributed File System, IEEE 26th 
Symposium on Mass Storage Systems and 
Technologies, 2010.



Q&A


